sexta-feira, 23 de novembro de 2012

QUESTÕES DE MOVIMENTO UNIFORMEMENTE VARIADO

Movimento Uniformemente Variado
1. Durante uma corrida de carros, um dos competidores consegue atingir 100km/h desde a largada em 5s. Qual a aceleração média por ele descrita?



2. Um móvel, partindo do repouso com uma aceleração constante igual 1m/s² se desloca durante 5 minutos. Ao final deste tempo, qual é a velocidade por ele adquirida?


3. Um automóvel encontra-se parado diante de um semáforo. Logo quando o sinal abre, ele arranca com aceleração 5m/s², enquanto isso, um caminhão passa por ele com velocidade constante igual a 10m/s.
(a) Depois de quanto tempo o carro alcança o caminhão?
(b) Qual a distância percorrida até o encontro.

Escreve-se as equações do muv para o carro e do mu para o caminhão:
Carro:

Caminhão:

Quando os dois se encontram, suas posições são iguais, então:

(b) Sabendo o momento do encontro, só é necessário aplicá-lo em uma das duas funções (do caminhão ou do carro).

Logo o carro encontra o caminhão 4 segundos após a sinaleira abrir, a uma distância de 40 m.

4. Uma motocicleta se desloca com velocidade constante igual a 30m/s. Quando o motociclista vê uma pessoa atravessar a rua freia a moto até parar. Sabendo que a aceleração máxima para frear a moto tem valor absoluto igual a 8m/s², e que a pessoa se encontra 50m distante da motocicleta. O motociclista conseguirá frear totalmente a motocicleta antes de alcançar a pessoa?
Como a aceleração utilizada para frear a moto se opõe ao movimento, tem valor negativo, então:


A motocicleta não irá parar antes de atingir a pessoa.

5. Um corredor chega a linha de chegada em uma corrida com velocidade igual a 18m/s. Após a chegada ele anda mais 6 metros até parar completamente. Qual o valor de sua aceleração?



Movimento Vertical
1. Uma pedra é abandonada de um penhasco de 100m de altura. Com que velocidade ela chega ao solo? Quanto tempo demora para chegar?






2. Em uma brincadeira chamada "Stop" o jogador deve lançar a bola verticalmente para cima e gritar o nome de alguma pessoa que esteja na brincadeira. Quando a bola retornar ao chão, o jogador chamado deve segurar a bola e gritar: "Stop", e todos os outros devem parar, assim a pessoa chamada deve "caçar" os outros jogadores. Quando uma das crianças lança a bola para cima, esta chega a uma altura de 15 metros. E retorna ao chão em 6 segundos. Qual a velocidade inicial do lançamento?
Para realizar este cálculo deve-se dividir o movimento em subida e descida, mas sabemos que o tempo gasto para a bola retornar é o dobro do tempo que ele gasta para subir ou descer. Então:
  • Subida (t=3s)



3. Durante a gravação de um filme, um dublê deve cair de um penhasco de 30m de altura e cair sobre um colchão. Quando ele chega ao colchão, este sofre uma deformação de 1m. Qual é a desaceleração que o dublê sofre até parar quando chega colchão?
A desaceleração sofrida pelo dublê se dará quando a velocidade inicial for a velocidade de chegada ao solo na queda vertical, a velocidade final for zero, e a distância do deslocamento for 1m de deformação do colchão. Então o primeiro passo para chegar a resolução é descobrir a velocidade de chegada ao solo:
Como no exercício não é dado o tempo, a maneira mais rápida de se calcular a velocidade é através da Equação de Torricelli para o movimento vertical, com aceleração da gravidade positiva, já que o movimento é no mesmo sentido da gravidade.
O segundo passo é calcular o movimento uniformemente variado para a desaceleração da queda. Com velocidade inicial igual a 24,5m/s.

4. Um fazendeiro precisa saber a profundidade de um poço em suas terras. Então, ele abandona uma pedra na boca do poço e cronometra o tempo que leva para ouvir o som da pedra no fundo. Ele observa que o tempo cronometrado é 5 segundos. Qual a altura do poço?
Podemos dividir o movimento em movimento da pedra e o deslocamento do som.
  • Movimento da Pedra:

  • Deslocamento do som:

Sabendo que a altura do poço é a mesma para as duas funções e que :

mas , então:


Sabendo que


Tendo os tempos de cada movimento, podemos calcular a altura utilizando qualquer uma das duas funções:

Nenhum comentário:

Postar um comentário